EUROASIAI\ T~
ONLINE
CONFERENCES

CONFERENCE

INTERNATIONAL CONFERENCE ON
SCIENCE; ENGINEERING AND

Getgle Setolar / OpenAlRE ALY Serite

iiiii glhlllﬂ)NAESlAN INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY

CONFERENCES

INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY:
a collection scientific works of the International scientific conference -
Gamburg, Germany, 2025 Issue 6

Languages of publication: Uzbek, English, Russian, German, Italian,
Spanish,

The collection consists of scientific research of scientists, graduate
students and students who took part in the International Scientific online
conference « INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING
AND TECHNOLOGY ». Which took place in Gamburg, 2025.

Conference proceedings are recommended for scientists and teachers in
higher education establishments. They can be used in education, including the
process of post - graduate teaching, preparation for obtain bachelors' and
masters' degrees. The review of all articles was accomplished by experts,
materials are according to authors copyright. The authors are responsible for
content, researches results and errors.

_ 2 Volume 2 Issue 6 | 2025

ONLINE

CONFERENCES . .

PERSEPTRONNI O‘RGATISH ALGORITMI
Tojimamatov Isroil Nurmamatovich
Farg‘ona davlat universiteti Amaliy matematika
va informatika kafedrasi katta o’qituvchisi
E-mail: istailtojimamatov@gmail.com
Muhammadshokirova Dinora Ma'rufjon qizi
Farg‘ona davlat universiteti Amaliy matematika
yo‘nalishi 3-bosqich 23.07-guruh talabasi
E-mail: dinorashermurodova91@gmail.com

Annotatsiya. Ushbu tezisda sun'iy intellektning asosiy modellaridan
biri — perseptronning o‘rgatish jarayoni, algoritmlari va matematik asoslari
batafsil tahlil gilinadi. Rosenblattning dastlabki o‘rgatish qoidasidan tortib,
gradient tushish va stoxastik gradient tushish usullarigacha bo‘lgan o‘rgatish
metodlari ko'rib- chiqilgan. Shuningdek, turli aktivatsiya funktsiyalari
yordamida perseptronni samarali o‘rgatish usullari ham ko‘rsatildi. Python
dasturlash tilida yozilgan amaliy kodlar orgali modelning ishlash printsipi va
o‘rgatish jarayoni namoyish etilgan.

Kalit so‘zlar: perseptron, sun'iy neyron tarmoq, o‘rgatish algoritmi,
gradient tushish, stoxastik gradient tushish, aktivatsiya funktsiyasi, Python
dasturlash, mashina o‘rganish, log-loss, sigmoid, ReLU.

Abstract. This thesis presents a detailed analysis of one of the primary
models of artificial intelligence, specifically the learning process, algorithms,
and mathematical foundations of the perceptron. It examines teaching
methods ranging from Rosenblatt's initial teaching rule to gradient drop and
stochastic gradient drop methods. Methods for effective perceptron training
using various activation functions were also shown. The operating principle of
the model and the learning process are demonstrated using application codes
written in the Python programming language.

Keywords: perceptron, artificial neural network, learning algorithm, gradient
drop, stochastic gradient drop, activation function, Python programming,
machine learning, log-loss, sigmoid, ReLU.

AHHOTanmsa. B [gaHHOM Te3uce NOAPOOHO aHAJIU3UPYIOTCA IMpolecc
00y4yeHHUs, aJiTOPUTMbl U MaTeMaTH4YeCKHe OCHOBbI OJHOM M3 OCHOBHBIX
Mo/JieJlel UCKYCCTBEHHOrO HHTeJIJIEKTAa - MeplenTpoHa. PaccMaTpuBatoTcs
MeTO/ibl 00y4eHHMsl, HAaUWHas C UCXOAHOTO0 MpaBuJa 0b6ydyeHusa Po3eHb6siaTTa U
3aKaHYMBasi MeETOJaMHU TIpPaJIMEHTHOr0 CHOyCcKa H CTOXaCTUYeCKOro
rpaJJUEHTHOr0 cnycka. TakKe MokKasaHbl MeTOAbl 3Qp(PEeKTUBHOTO 00y4YeHUs
neplenTpoHa € MOMOUIbI Pa3IMYHbIX QYHKUUN akTHBalyMu. C MOMOILbIO
NpUKJIAJHbIX KOJI0OB, HAalMCAaHHbIX Ha fI3blKe NporpamMmupoBaHus Python,
JIeMOHCTPUPYETCS MPUHIMI pab0Thl MOJAEIU U MTPOLECC 00YYEHUS.
KiroueBble cii0Ba: perceptron, UCKyCCTBEHHAsl HEMPOHHAsS CETb, AJITOPUTM
00y4yeHHs], TPaJIMEHTHbIM CHYCK, CTOXaCTUYECKUW TIpajUeHTHBIN CHYCK,

I >° Volume2 Issue6 | 2025

iiiii EUROASIAN INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY

ONLINE

CONFERENCES . .

bYHKIMA aKTUBalLlMM, MporpaMMyUpoBaHue Python, mamrHHOe 06y4yeHUe, log-
loss, curmouy, ReLU.
Kirish

Sun’iy intellekt (SI) sohasida neyron tarmoqlar va ularning asosiy
elementlari bo‘lgan perseptron modeli muhim o‘rin tutadi. Perseptron — bu
oddiy sun’iy neyron bo‘lib, kirish ma’lumotlarini gabul qilib, ularni vaznlar
bilan ko‘paytiradi, keyin yig‘indini hisoblab, aktivatsiya funktsiyasi orqali
chiqish signalini hosil giladi. Ushbu model mashina o‘rganish jarayonining
asosiy bloklaridan biri sifatida, tasniflash va bashorat qilish vazifalarini
bajarishda keng qo‘llaniladi. Perseptronni o‘rgatish jarayoni esa uning vazn va
bias giymatlarini ma’lumotlar asosida moslashtirishdan iborat bo‘lib, natijada
model yangi, ko‘rilmagan ma’lumotlarga nisbatan ham to‘g‘ri javob bera oladi.
O‘rgatish algoritmlari, xususan, Rosenblattning klassik qoidasidan tortib,
zamonaviy gradient tushish va stoxastik gradient tushish usullarigacha
bo‘lgan texnikalar mavjud. Bundan tashqari, turli aktivatsiya funktsiyalari —
pog‘onali, sigmoid, tanh va ReLU — modelning moslashuvchanligi va
aniqligini oshirishga yordam beradi. Ushbu tezisda perseptronning o‘rgatish
algoritmlari, matematik asoslari hamda Python dasturlash tilida amaliy
qo‘llanishi batafsil ko‘rib chiqgiladi. Bu esa yangi boshlovchilar va
mutaxassislar uchun sun’iy neyron tarmogqlarini chuqurroq tushunish va
amaliy loyihalarda qo‘llash imkonini yaratadi.

Perseptronni o'rgatish jarayoni asosan modelning vazn va bias
qiymatlarini yangilash orqali bashoratdagi xatolikni kamaytirishga qaratilgan.
Eng oddiy perseptron o'rgatish qoidasi Rosenblatt tomonidan taklif qilingan
bo‘lib, u quyidagi asosiy bosqichlarni o‘z ichiga oladi:

« Kirish ma'lumotlari asosida chigishni bashorat gilish

« Bashorat qilingan natija va haqiqiy natija o‘rtasidagi xatolikni hisoblash

« Vazn va bias giymatlarini xatolik asosida yangilash

« Xatolik yo‘qolgunga qadar jarayonni takrorlash
Quyidagi kodda Rosenblattning asosiy o‘rgatish jarayoni ko‘rsatilgan:

Import numpy as np

class Perceptron:

def __init__(self, input_size, learning_rate=0.01, max_epochs=1000):
self.weights = np.zeros(input_size)
self.bias =0
self.learning rate = learning_rate
self.max_epochs = max_epochs
self.errors_history = []
def predict_sample(self, x):

activation = np.dot(x, self.weights) + self.bias
return 1 if activation >= 0 else 0

iiiii EUROASIAN INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY

_ 91 Volume 2 Issue6 | 2025

CONFERENCES

iiiii glhlllﬂ)NAESlAN INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY

def predict(self, X):
return np.array([self.predict_sample(x) for x in X])

def train (self, X, y):
n_samples = X.shape[0]
for epoch in range(self.max_epochs):
errors = 0
foriin range(n_samples):
x_i = X[i]
yi=yli]
y_pred = self.predict_sample(x_i)
error =y_i - y_pred
if error != 0:
self.weights += self.learning_rate * error * x_i
self.bias += self.learning_rate * error
errors += 1
self.errors_history.append(errors)
if errors ==
print(f"O'rgatish tugallandi: {epoch+1} ta iteratsiyadan so'ng.")
break
return self
Ushbu usulda har bir ma'lumot namunasi uchun bashorat qilinib, agar
natija xato bo‘lsa, vazn va bias giymatlari yangilanadi. Jarayon barcha
namunalar to‘gri tasniflangan holatga yetguncha yoki maksimal iteratsiya
sonigacha davom etadi.
Xatolik funktsiyasi va gradient tushish
Rosenblatt qoidasidan tashqari, zamonaviy perseptron o‘rgatish
algoritmlari ko‘pincha gradient tushish (gradient descent) usulini qo‘llaydi. Bu
usul xatolik funktsiyasini (masalan, log-loss) minimal qilish orqgali model
parametrlarini optimallashtiradi. Quyidagi kodda gradient tushish asosida
o‘rgatiladigan sigmoid aktivatsiyaga ega perseptron misoli keltirilgan:
class GradientPerceptron:
def __init__(self, input_size, learning_rate=0.01, max_epochs=1000):
self.weights = np.zeros(input_size)
self.bias =0
self.learning rate = learning_rate
self.max_epochs = max_epochs
self.loss_history =[]

def sigmoid(self, x):
return 1 / (1 + np.exp(-x))

_ 92| Volume 2 Issue6 | 2025

CONFERENCES

iiiii glhlllﬂ)NAESlAN INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY

def predict_proba(self, X):
return self.sigmoid(np.dot(X, self.weights) + self.bias)

def predict(self, X):
return (self.predict_proba(X) >= 0.5).astype(int)

def compute_loss(self, X, y):
y_pred = self.predict_proba(X)
return -np.mean(y * np.log(y_pred + 1e-10) + (1 - y) * np.log(1 - y_pred +
le-10))

def train(self, X, y):
n_samples = X.shape[0]
for epoch in range(self.max_epochs):
y_pred = self.predict_proba(X)
loss = self.compute_loss(X, y)
self.loss_history.append(loss)
dw = (1/n_samples) * np.dot(X.T, (y_pred - y))
db = (1/n_samples) * np.sum(y_pred - y)
self.weights -= self.learning _rate * dw
self.bias -= self.learning_rate * db
if epoch % 100 == 0:
print(f"Epoch {epoch}, Loss: {loss:.6f}")
ifloss < 1e-5:
print(f"Konvergensiya: {epoch+1} ta iteratsiyadan so'ng.")
break
return self
Gradient tushish algoritmi orqali parametrlar xatolik gradientiga qarshi
yo'nalishda yangilanadi va shu bilan model yaxshilanadi.
Turli aktivatsiya funktsiyalari bilan perseptronni o'rgatish
Perseptronlarda turli aktivatsiya funktsiyalari qo‘llanilishi mumkin. Eng
oddiy — pog'onali (step) funktsiya bo‘lsa, zamonaviy modellarda sigmoid,
tanh, yoki ReLU kabi noaniq va qiyshiq funktsiyalar ishlatiladi. Bu aktivatsiya
funktsiyalarining hosilalari gradient tushish jarayonida muhim rol o‘ynaydi.
Quyida turli aktivatsiya funktsiyalar va ularning hosilalari bilan ishlaydigan
moslashuvchan perseptron klassining namunasi keltirilgan:
FlexiblePerceptron:
def __init__(self, input_size, activation_function="sigmoid’,
learning rate=0.01, max_epochs=1000):
self.weights = np.zeros(input_size)
self.bias =0
self.learning rate = learning rate

I > Volume2 Issue6 | 2025

% EOC
iiiii evroASIAN INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY

ONLINE
CONFERENCES . .

self.max_epochs = max_epochs
self.loss_history =[]

if activation_function == "step":
self.activation = lambda x: np.where(x >=0, 1, 0)
self.activation_derivative = lambda x: 0
elif activation_function == "sigmoid":
self.activation = lambda x: 1 / (1 + np.exp(-x))
self.activation_derivative = lambda x: x * (1 - X)
elif activation_function == 'tanh":
self.activation = lambda x: np.tanh(x)
self.activation_derivative = lambda x: 1 - x**2
elif activation_function == "relu":
self.activation = lambda x: np.maximum(0, x)
self.activation_derivative = lambda x: np.where(x > 0, 1, 0)
else:
raise ValueError("Noto'g'ri aktivatsiya funktsiyasi")

def forward(self, X):
self.z = np.dot(X, self.weights) + self.bias
self.a = self.activation(self.z)
return self.a

def compute_loss(self, y_true, y_pred):
return np.mean((y_true - y_pred) ** 2)

def train(self, X, y):
n_samples = X.shape|[0]
for epoch in range(self.max_epochs):
y_pred = self.forward(X)
loss = self.compute_loss(y, y_pred)
self.loss_history.append(loss)
delta = (y_pred - y) * self.activation_derivative(y_pred)
dw = (1/n_samples) * np.dot(X.T, delta)
db = (1/n_samples) * np.sum(delta)
self.weights -= self.learning _rate * dw
self.bias -= self.learning_rate * db
if epoch % 100 == 0:
print(f"Epoch {epoch}, Loss: {loss:.6f}")
ifloss < 1e-5:
print(f"Konvergensiya: {epoch+1} ta iteratsiyadan so'ng.")
break

_ 94 | Volume 2 Issue6 | 2025

ONLINE

CONFERENCES . .

return self
def predict(self, X):
return (self.forward(X) >= 0.5).astype(int)

iiiii EUROASIAN INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY

Perseptronni o'rgatish metodlari va amaliy jihatlar
Stoxastik gradient tushish (SGD)

Stoxastik gradient tushish algoritmi (SGD) har bir iteratsiyada faqgat
bitta ma'lumot namunasi asosida parametrlarni yangilaydi. Bu usul
o‘rgatishni tezlashtiradi va katta hajmdagi ma'lumotlar bilan ishlashda
samarali hisoblanadi. Quyida SGD asosidagi perseptron o'rgatish jarayoni
misoli keltirilgan:
class SGDPerceptron:

def __init__(self, input_size, learning_rate=0.01, max_epochs=1000):
self.weights = np.zeros(input_size)
self.bias = 0
self.learning rate = learning rate
self.max_epochs = max_epochs
self.loss_history = []

def sigmoid(self, x):
return 1 / (1 + np.exp(-x))

def forward(self, x):
z = np.dot(x, self.weights) + self.bias
return self.sigmoid(z)

def compute_sample_loss(self, y_true, y_pred):
return -y_true * np.log(y_pred + 1e-10) - (1 - y_true) * np.log(1 - y_pred +
le-10)
def train(self, X, y):
n_samples = X.shape[0]
indices = np.arange(n_samples)
for epoch in range(self.max_epochs):
total loss =0
np.random.shuffle(indices)
X_shuffled = X[indices]
y_shuffled = y[indices]
for i in range(n_samples):
x_i = X_shuffled[i]
y_i = y_shuffled[i]
y_pred = self.forward(x_i)
loss = self.compute_sample_loss(y_i, y_pred)

I >: | Volume2 Issue6 | 2025

EUROASIAN
ONLINE
CONFERENCES

INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY

total_loss +=loss
gradient=y_pred - y_i
self.weights -= self.learning_rate * gradient * x_i
self.bias -= self.learning_rate * gradient
avg_loss = total_loss / n_samples
self.loss_history.append(avg_loss)
if epoch % 100 ==
print(f"Epoch {epoch}, Loss: {avg loss:.6f}")
if avg_loss < le-5:
print(f"Konvergensiya: {epoch+1} ta iteratsiyadan so'ng.")
break

return self
def predict(self, X):
return np.array([1 if self.forward(x) >= 0.5 else 0 for x in X])

Xulosa

Perseptron — sun'iy neyronlarning eng sodda va asosiy modeli bo'lib,

uning o‘rgatish jarayoni mashina o‘rganish va sun'iy intellekt sohasida katta
ahamiyatga ega. Rosenblatt algoritmi asosida boshlanib, keyinchalik gradient
tushish va stoxastik gradient tushish kabi optimallashtirish usullari rivojlandi.
Turli aktivatsiya funktsiyalari modelning moslashuvchanligini oshiradi va
uning yanada murakkab masalalarni yechish imkoniyatini beradi. Python
dasturlash tilida ushbu algoritmlarni oddiy va tushunarli tarzda amalga
oshirish mumkin, bu esa ilmiy-tadgiqot va amaliy loyihalarda katta foyda
keltiradi.

Foydalanilgan adabiyotlar

1.

2.

3.

Bekmuratov Q.A. , Sun’iy intellekt va neyron tarmoglar. O‘quv
qo‘llanma, Samarqgand - 2021.

Sadullayeva SH.A, Yusupov D.F., Yusupov F. Sun’iy intellect va
neyrontorli texnologiyalar. O‘quv qo‘llanma, Urganch - 2021.
H.N.Zayniddinov, T.A.Xo‘jaqulov, M.P.Atadjanov, “Sun’iy intellekt”
fanidan o‘quv qo‘llanma, Toshkent - 2018.

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT
Press.

Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow. O'Reilly Media.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT
Press. [Online] Available at: https://www.deeplearningbook.org/
NHTennekTyasbHble WHGGOPMAllMOHHbIE CHUCTEMbl W TEXHOJIOTHU:
yyebHoe nocobue/ 10.10. I'pomos, O.I'MBaHoBa, B.B. AnekcceB u fAp. -
taMm60B: U3aB0o ®I'BEOY BIIO «TI'TY», 2013.-244c.

I o6 Volume2 Issue6 | 2025

