
          EuroAsian International Scientific Online Conference 

          INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 

 
 

                        1  Volume 2   Issue 6   |  2025    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          EuroAsian International Scientific Online Conference 

          INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 

 
 

                        2  Volume 2   Issue 6   |  2025    

INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY: 

a collection scientific works of the International scientific conference  – 

Gamburg, Germany, 2025 Issue 6 

 
Languages of publication: Uzbek, English, Russian, German, Italian, 

Spanish,  
 
The collection consists of scientific research of scientists, graduate 

students and students who took part in the International Scientific online 
conference « INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING 
AND TECHNOLOGY ». Which took place in Gamburg, 2025. 

 
Conference proceedings are recommended for scientists and teachers in 

higher education establishments. They can be used in education, including the 

process of post - graduate teaching, preparation for obtain bachelors' and 

masters' degrees. The review of all articles was accomplished by experts, 

materials are according to authors copyright. The authors are responsible for 

content, researches results and errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          EuroAsian International Scientific Online Conference 

          INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 

 
 

                        90  Volume 2   Issue 6   |  2025    

PERSEPTRONNI OʻRGATISH ALGORITMI 
Tojimamatov Isroil Nurmamatovich 

Farg‘ona davlat universiteti Amaliy matematika 
va informatika kafedrasi katta o’qituvchisi 

E-mail: istailtojimamatov@gmail.com 
Muhammadshokirova Dinora Ma'rufjon qizi 
Farg‘ona davlat universiteti Amaliy matematika 

yoʻnalishi 3-bosqich 23.07-guruh talabasi 
E-mail: dinorashermurodova91@gmail.com 

Annotatsiya. Ushbu tezisda sun'iy intellektning asosiy modellaridan 
biri — perseptronning o‘rgatish jarayoni, algoritmlari va matematik asoslari 
batafsil tahlil qilinadi. Rosenblattning dastlabki o‘rgatish qoidasidan tortib, 
gradient tushish va stoxastik gradient tushish usullarigacha bo‘lgan o‘rgatish 
metodlari ko‘rib chiqilgan. Shuningdek, turli aktivatsiya funktsiyalari 
yordamida perseptronni samarali o‘rgatish usullari ham ko‘rsatildi. Python 
dasturlash tilida yozilgan amaliy kodlar orqali modelning ishlash printsipi va 
o‘rgatish jarayoni namoyish etilgan. 

Kalit so‘zlar: perseptron, sun'iy neyron tarmoq, o‘rgatish algoritmi, 
gradient tushish, stoxastik gradient tushish, aktivatsiya funktsiyasi, Python 
dasturlash, mashina o‘rganish, log-loss, sigmoid, ReLU. 

Abstract. This thesis presents a detailed analysis of one of the primary 
models of artificial intelligence, specifically the learning process, algorithms, 
and mathematical foundations of the perceptron. It examines teaching 
methods ranging from Rosenblatt's initial teaching rule to gradient drop and 
stochastic gradient drop methods. Methods for effective perceptron training 
using various activation functions were also shown. The operating principle of 
the model and the learning process are demonstrated using application codes 
written in the Python programming language. 
Keywords: perceptron, artificial neural network, learning algorithm, gradient 
drop, stochastic gradient drop, activation function, Python programming, 
machine learning, log-loss, sigmoid, ReLU. 
Аннотация. В данном тезисе подробно анализируются процесс 
обучения, алгоритмы и математические основы одной из основных 
моделей искусственного интеллекта - перцептрона. Рассматриваются 
методы обучения, начиная с исходного правила обучения Розенблатта и 
заканчивая методами градиентного спуска и стохастического 
градиентного спуска. Также показаны методы эффективного обучения 
перцептрона с помощью различных функций активации. С помощью 
прикладных кодов, написанных на языке программирования Python, 
демонстрируется принцип работы модели и процесс обучения. 
Ключевые слова: perceptron, искусственная нейронная сеть, алгоритм 
обучения, градиентный спуск, стохастический градиентный спуск, 



          EuroAsian International Scientific Online Conference 

          INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 

 
 

                        91  Volume 2   Issue 6   |  2025    

функция активации, программирование Python, машинное обучение, log-
loss, сигмоид, ReLU. 
Kirish 

Sun’iy intellekt (SI) sohasida neyron tarmoqlar va ularning asosiy 
elementlari bo‘lgan perseptron modeli muhim o‘rin tutadi. Perseptron — bu 
oddiy sun’iy neyron bo‘lib, kirish ma’lumotlarini qabul qilib, ularni vaznlar 
bilan ko‘paytiradi, keyin yig‘indini hisoblab, aktivatsiya funktsiyasi orqali 
chiqish signalini hosil qiladi. Ushbu model mashina o‘rganish jarayonining 
asosiy bloklaridan biri sifatida, tasniflash va bashorat qilish vazifalarini 
bajarishda keng qo‘llaniladi. Perseptronni o‘rgatish jarayoni esa uning vazn va 
bias qiymatlarini ma’lumotlar asosida moslashtirishdan iborat bo‘lib, natijada 
model yangi, ko‘rilmagan ma’lumotlarga nisbatan ham to‘g‘ri javob bera oladi. 
O‘rgatish algoritmlari, xususan, Rosenblattning klassik qoidasidan tortib, 
zamonaviy gradient tushish va stoxastik gradient tushish usullarigacha 
bo‘lgan texnikalar mavjud. Bundan tashqari, turli aktivatsiya funktsiyalari — 
pog‘onali, sigmoid, tanh va ReLU — modelning moslashuvchanligi va 
aniqligini oshirishga yordam beradi. Ushbu tezisda perseptronning o‘rgatish 
algoritmlari, matematik asoslari hamda Python dasturlash tilida amaliy 
qo‘llanishi batafsil ko‘rib chiqiladi. Bu esa yangi boshlovchilar va 
mutaxassislar uchun sun’iy neyron tarmoqlarini chuqurroq tushunish va 
amaliy loyihalarda qo‘llash imkonini yaratadi. 

Perseptronni o'rgatish jarayoni asosan modelning vazn va bias 
qiymatlarini yangilash orqali bashoratdagi xatolikni kamaytirishga qaratilgan. 
Eng oddiy perseptron o'rgatish qoidasi Rosenblatt tomonidan taklif qilingan 
bo‘lib, u quyidagi asosiy bosqichlarni o‘z ichiga oladi: 

 Kirish ma'lumotlari asosida chiqishni bashorat qilish 
 Bashorat qilingan natija va haqiqiy natija o‘rtasidagi xatolikni hisoblash 
 Vazn va bias qiymatlarini xatolik asosida yangilash 
 Xatolik yo‘qolgunga qadar jarayonni takrorlash 

Quyidagi kodda Rosenblattning asosiy o‘rgatish jarayoni ko‘rsatilgan: 
import numpy as np 
class Perceptron: 
    def __init__(self, input_size, learning_rate=0.01, max_epochs=1000): 
        self.weights = np.zeros(input_size) 
        self.bias = 0 
        self.learning_rate = learning_rate 
        self.max_epochs = max_epochs 
        self.errors_history = [] 
            def predict_sample(self, x): 
        activation = np.dot(x, self.weights) + self.bias 
        return 1 if activation >= 0 else 0 
     



          EuroAsian International Scientific Online Conference 

          INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 

 
 

                        92  Volume 2   Issue 6   |  2025    

    def predict(self, X): 
        return np.array([self.predict_sample(x) for x in X]) 
     
    def train (self, X, y): 
        n_samples = X.shape[0] 
        for epoch in range(self.max_epochs): 
            errors = 0 
            for i in range(n_samples): 
                x_i = X[i] 
                y_i = y[i] 
                y_pred = self.predict_sample(x_i) 
                error = y_i - y_pred 
                if error != 0: 
                    self.weights += self.learning_rate * error * x_i 
                    self.bias += self.learning_rate * error 
                    errors += 1 
            self.errors_history.append(errors) 
            if errors == 0: 
                print(f"O'rgatish tugallandi: {epoch+1} ta iteratsiyadan so'ng.") 
                break 
        return self 

Ushbu usulda har bir ma'lumot namunasi uchun bashorat qilinib, agar 
natija xato bo‘lsa, vazn va bias qiymatlari yangilanadi. Jarayon barcha 
namunalar to‘g‘ri tasniflangan holatga yetguncha yoki maksimal iteratsiya 
sonigacha davom etadi. 
Xatolik funktsiyasi va gradient tushish 

Rosenblatt qoidasidan tashqari, zamonaviy perseptron o‘rgatish 
algoritmlari ko‘pincha gradient tushish (gradient descent) usulini qo‘llaydi. Bu 
usul xatolik funktsiyasini (masalan, log-loss) minimal qilish orqali model 
parametrlarini optimallashtiradi. Quyidagi kodda gradient tushish asosida 
o‘rgatiladigan sigmoid aktivatsiyaga ega perseptron misoli keltirilgan: 
class GradientPerceptron: 
    def __init__(self, input_size, learning_rate=0.01, max_epochs=1000): 
        self.weights = np.zeros(input_size) 
        self.bias = 0 
        self.learning_rate = learning_rate 
        self.max_epochs = max_epochs 
        self.loss_history = [] 
     
    def sigmoid(self, x): 
        return 1 / (1 + np.exp(-x)) 
     



          EuroAsian International Scientific Online Conference 

          INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 

 
 

                        93  Volume 2   Issue 6   |  2025    

    def predict_proba(self, X): 
        return self.sigmoid(np.dot(X, self.weights) + self.bias) 
     
    def predict(self, X): 
        return (self.predict_proba(X) >= 0.5).astype(int) 
     
    def compute_loss(self, X, y): 
        y_pred = self.predict_proba(X) 
        return -np.mean(y * np.log(y_pred + 1e-10) + (1 - y) * np.log(1 - y_pred + 
1e-10)) 
     
    def train(self, X, y): 
        n_samples = X.shape[0] 
        for epoch in range(self.max_epochs): 
            y_pred = self.predict_proba(X) 
            loss = self.compute_loss(X, y) 
            self.loss_history.append(loss) 
            dw = (1/n_samples) * np.dot(X.T, (y_pred - y)) 
            db = (1/n_samples) * np.sum(y_pred - y) 
            self.weights -= self.learning_rate * dw 
            self.bias -= self.learning_rate * db 
            if epoch % 100 == 0: 
                print(f"Epoch {epoch}, Loss: {loss:.6f}") 
            if loss < 1e-5: 
                print(f"Konvergensiya: {epoch+1} ta iteratsiyadan so'ng.") 
                break 
        return self 
Gradient tushish algoritmi orqali parametrlar xatolik gradientiga qarshi 
yo'nalishda yangilanadi va shu bilan model yaxshilanadi. 
Turli aktivatsiya funktsiyalari bilan perseptronni o'rgatish 

Perseptronlarda turli aktivatsiya funktsiyalari qo‘llanilishi mumkin. Eng 
oddiy — pog'onali (step) funktsiya bo‘lsa, zamonaviy modellarda sigmoid, 
tanh, yoki ReLU kabi noaniq va qiyshiq funktsiyalar ishlatiladi. Bu aktivatsiya 
funktsiyalarining hosilalari gradient tushish jarayonida muhim rol o‘ynaydi. 
Quyida turli aktivatsiya funktsiyalar va ularning hosilalari bilan ishlaydigan 
moslashuvchan perseptron klassining namunasi keltirilgan: 
 FlexiblePerceptron: 
    def __init__(self, input_size, activation_function='sigmoid', 
learning_rate=0.01, max_epochs=1000): 
        self.weights = np.zeros(input_size) 
        self.bias = 0 
        self.learning_rate = learning_rate 



          EuroAsian International Scientific Online Conference 

          INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 

 
 

                        94  Volume 2   Issue 6   |  2025    

        self.max_epochs = max_epochs 
        self.loss_history = [] 
         
        if activation_function == 'step': 
            self.activation = lambda x: np.where(x >= 0, 1, 0) 
            self.activation_derivative = lambda x: 0 
        elif activation_function == 'sigmoid': 
            self.activation = lambda x: 1 / (1 + np.exp(-x)) 
            self.activation_derivative = lambda x: x * (1 - x) 
        elif activation_function == 'tanh': 
            self.activation = lambda x: np.tanh(x) 
            self.activation_derivative = lambda x: 1 - x**2 
        elif activation_function == 'relu': 
            self.activation = lambda x: np.maximum(0, x) 
            self.activation_derivative = lambda x: np.where(x > 0, 1, 0) 
        else: 
            raise ValueError("Noto'g'ri aktivatsiya funktsiyasi") 
     
    def forward(self, X): 
        self.z = np.dot(X, self.weights) + self.bias 
        self.a = self.activation(self.z) 
        return self.a 
     
    def compute_loss(self, y_true, y_pred): 
        return np.mean((y_true - y_pred) ** 2) 
     
    def train(self, X, y): 
        n_samples = X.shape[0] 
        for epoch in range(self.max_epochs): 
            y_pred = self.forward(X) 
            loss = self.compute_loss(y, y_pred) 
            self.loss_history.append(loss) 
            delta = (y_pred - y) * self.activation_derivative(y_pred) 
            dw = (1/n_samples) * np.dot(X.T, delta) 
            db = (1/n_samples) * np.sum(delta) 
            self.weights -= self.learning_rate * dw 
            self.bias -= self.learning_rate * db 
            if epoch % 100 == 0: 
                print(f"Epoch {epoch}, Loss: {loss:.6f}") 
            if loss < 1e-5: 
                print(f"Konvergensiya: {epoch+1} ta iteratsiyadan so'ng.") 
                break 



          EuroAsian International Scientific Online Conference 

          INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 

 
 

                        95  Volume 2   Issue 6   |  2025    

        return self 
    def predict(self, X): 
        return (self.forward(X) >= 0.5).astype(int) 

Perseptronni o'rgatish metodlari va amaliy jihatlar 
Stoxastik gradient tushish (SGD) 

Stoxastik gradient tushish algoritmi (SGD) har bir iteratsiyada faqat 
bitta ma'lumot namunasi asosida parametrlarni yangilaydi. Bu usul 
o‘rgatishni tezlashtiradi va katta hajmdagi ma'lumotlar bilan ishlashda 
samarali hisoblanadi. Quyida SGD asosidagi perseptron o'rgatish jarayoni 
misoli keltirilgan: 
class SGDPerceptron: 
    def __init__(self, input_size, learning_rate=0.01, max_epochs=1000): 
        self.weights = np.zeros(input_size) 
        self.bias = 0 
        self.learning_rate = learning_rate 
        self.max_epochs = max_epochs 
        self.loss_history = [] 
     
    def sigmoid(self, x): 
        return 1 / (1 + np.exp(-x)) 
     
    def forward(self, x): 
        z = np.dot(x, self.weights) + self.bias 
        return self.sigmoid(z) 
     
    def compute_sample_loss(self, y_true, y_pred): 
        return -y_true * np.log(y_pred + 1e-10) - (1 - y_true) * np.log(1 - y_pred + 
1e-10)  
    def train(self, X, y): 
        n_samples = X.shape[0] 
        indices = np.arange(n_samples) 
        for epoch in range(self.max_epochs): 
            total_loss = 0 
            np.random.shuffle(indices) 
            X_shuffled = X[indices] 
            y_shuffled = y[indices] 
            for i in range(n_samples): 
                x_i = X_shuffled[i] 
                y_i = y_shuffled[i] 
                y_pred = self.forward(x_i) 
                loss = self.compute_sample_loss(y_i, y_pred) 



          EuroAsian International Scientific Online Conference 

          INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 

 
 

                        96  Volume 2   Issue 6   |  2025    

                total_loss += loss 
                gradient = y_pred - y_i 
                self.weights -= self.learning_rate * gradient * x_i 
                self.bias -= self.learning_rate * gradient 
            avg_loss = total_loss / n_samples 
            self.loss_history.append(avg_loss) 
            if epoch % 100 == 0: 
                print(f"Epoch {epoch}, Loss: {avg_loss:.6f}") 
            if avg_loss < 1e-5: 
                print(f"Konvergensiya: {epoch+1} ta iteratsiyadan so'ng.") 
                break 
        return self 
    def predict(self, X): 
        return np.array([1 if self.forward(x) >= 0.5 else 0 for x in X]) 

Xulosa 
Perseptron — sun'iy neyronlarning eng sodda va asosiy modeli bo‘lib, 

uning o‘rgatish jarayoni mashina o‘rganish va sun'iy intellekt sohasida katta 
ahamiyatga ega. Rosenblatt algoritmi asosida boshlanib, keyinchalik gradient 
tushish va stoxastik gradient tushish kabi optimallashtirish usullari rivojlandi. 
Turli aktivatsiya funktsiyalari modelning moslashuvchanligini oshiradi va 
uning yanada murakkab masalalarni yechish imkoniyatini beradi. Python 
dasturlash tilida ushbu algoritmlarni oddiy va tushunarli tarzda amalga 
oshirish mumkin, bu esa ilmiy-tadqiqot va amaliy loyihalarda katta foyda 
keltiradi. 
Foydalanilgan adabiyotlar 

1. Bekmuratov Q.A. , Sun’iy intellekt va neyron tarmoqlar. O‘quv 
qo‘llanma,     Samarqand – 2021. 

2. Sadullayeva SH.A, Yusupov D.F., Yusupov F., Sun’iy intellect va 
neyronto‘rli texnologiyalar. O‘quv qo‘llanma, Urganch – 2021. 

3. H.N.Zayniddinov, T.A.Xo‘jaqulov, M.P.Atadjanov, “Sun’iy intellekt” 
fanidan o‘quv qo‘llanma, Toshkent – 2018. 

4. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT 
Press. 

5. Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, 
and TensorFlow. O'Reilly Media. 

6. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT 
Press. [Online] Available at: https://www.deeplearningbook.org/ 

7. Интеллектуальные информационные системы и технологии: 
учебное пособие/ Ю.Ю. Громов, О.Г.Иванова, В.В. Алекссев и др. –
тамбов: Издво ФГБОУ ВПО «ТГТУ», 2013.-244с. 
 


