

E O C
EUROASIAN
ONLINE
CONFERENCES

SPAIN CONFERENCE

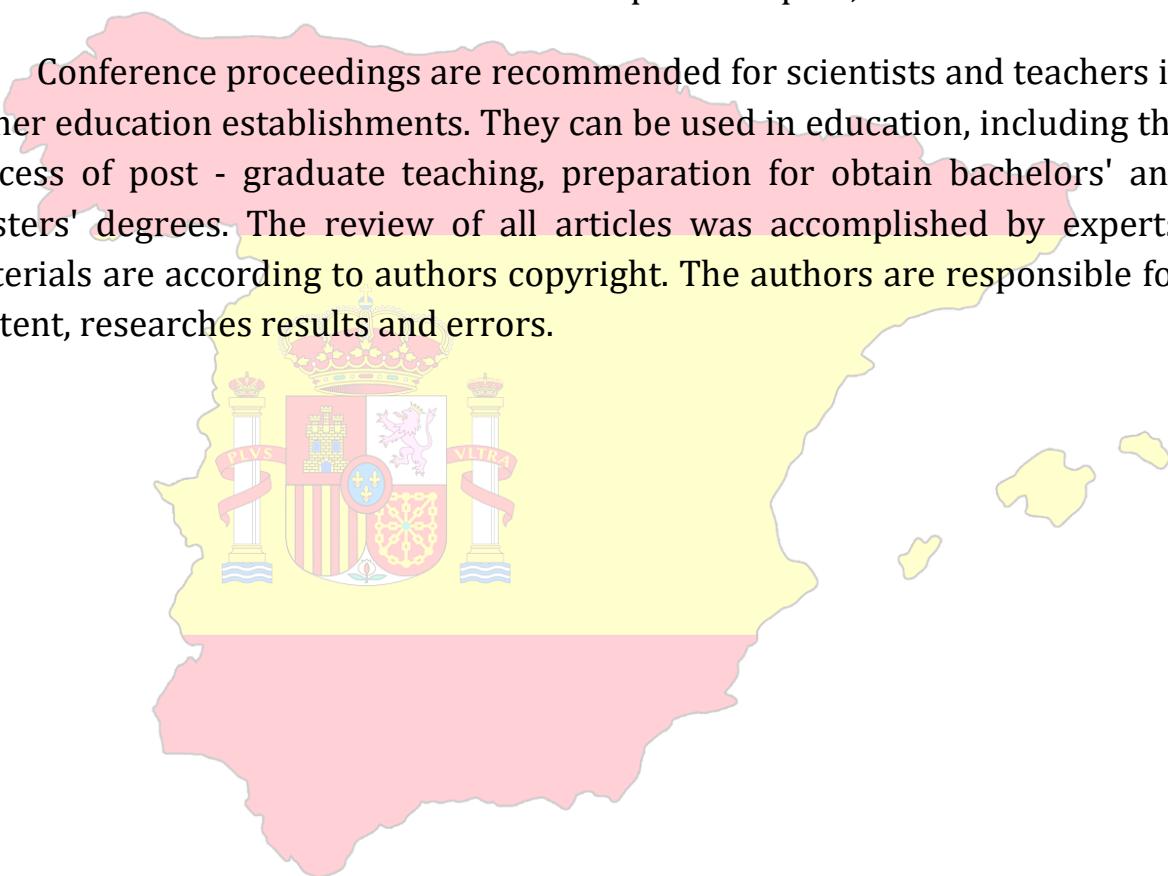
**INTERNATIONAL CONFERENCE ON
SUPPORT OF MODERN SCIENCE AND
INNOVATION**

Google Scholar

zenodo

OpenAIRE

doi⁺ digital object
identifier



INTERNATIONAL CONFERENCE ON SUPPORT OF MODERN SCIENCE AND INNOVATION: a collection scientific works of the International scientific conference – Madrid, Spain, 2025, Issue 4.

Languages of publication: Uzbek, English, Russian, German, Italian, Spanish,

The collection consists of scientific research of scientists, graduate students and students who took part in the International Scientific online conference **«INTERNATIONAL CONFERENCE ON SUPPORT OF MODERN SCIENCE AND INNOVATION»**. Which took place in Spain, 2025.

Conference proceedings are recommended for scientists and teachers in higher education establishments. They can be used in education, including the process of post - graduate teaching, preparation for obtain bachelors' and masters' degrees. The review of all articles was accomplished by experts, materials are according to authors copyright. The authors are responsible for content, researches results and errors.

THE METHODOLOGICAL SIGNIFICANCE OF DEVELOPING STUDENTS' INVENTIVE ACTIVITIES BASED ON STEAM PROJECTS IN SCHOOL

G'aniyeva Gulxayyo Islomovna

Termez State Pedagogical Institute

Teacher at the Department of Primary Education, PhD

Turdiyeva Barchinoy Bobirovna

Termez State Pedagogical Institute

Master's student

Annotation: This scientific article examines the methodological significance of developing students' inventive activity through STEAM-based projects within school education. It analyzes the theoretical foundations of STEAM integration, pedagogical mechanisms that stimulate innovation, and instructional methods that shape students' creative and technical thinking. The study concludes that STEAM project methodology serves as a powerful pedagogical tool for cultivating inventive competencies aligned with modern scientific and technological demands.

Keywords: STEAM education; inventive activity; innovation pedagogy; project-based learning; interdisciplinary integration; scientific creativity; methodological foundations; school education

The rapid evolution of science and technology places new demands on general education systems, requiring the formation of learners who possess creativity, technical literacy, and the ability to generate novel solutions. In this regard, the cultivation of students' inventive activity in school has become a central priority for modern pedagogy. One of the most effective approaches in this direction is STEAM education, which presents a multidisciplinary platform for shaping students' problem-solving and innovation skills. STEAM, encompassing science, technology, engineering, arts, and mathematics, offers an integrated learning environment that encourages students to apply knowledge in a practical, constructive, and creative manner.

From a methodological standpoint, STEAM education is grounded in constructivist learning theories, which emphasize active engagement, experiential learning, and inquiry-based exploration. These theories suggest that inventive competencies develop most effectively when learners are immersed in authentic problem situations. STEAM projects, therefore, serve as pedagogical instruments that activate students' scientific curiosity and challenge them to construct solutions that require both analytical and imaginative thinking. In this process, students are not passive recipients of knowledge; instead, they function as young researchers, designers, and inventors.

The development of inventive activity through STEAM projects entails the combination of theoretical knowledge and practical implementation. Students engage in processes such as hypothesis generation, experimental design, prototype construction, digital modeling, coding, and evaluation of results. These educational experiences enhance their capacity for divergent thinking, which is essential for generating original ideas, as well as convergent thinking required for designing viable technological solutions. As a result, learners develop a balanced set of cognitive and creative skills that mirror the competencies of real-world innovators.

A key methodological feature of STEAM-based invention development is interdisciplinary integration. Traditional school subjects often operate separately; however, inventive activity naturally requires the synthesis of multiple domains. In STEAM pedagogy, scientific principles support technological functionality, engineering structures ensure practical applicability, mathematical reasoning provides precision, and artistic thinking contributes to design aesthetics and creativity. This deep and meaningful integration enables students to view problems from multiple perspectives and develop comprehensive solutions.

Another important methodological aspect is project-based learning, which lies at the core of STEAM activities. Through project-based tasks, students identify problems, define goals, conduct research, plan solutions, and ultimately create tangible outcomes. This approach fosters autonomy, responsibility, and initiative—qualities that are fundamental to inventive behavior. Moreover, project-based learning situates students' tasks within real-life contexts, thereby increasing relevance and motivation. When students perceive their projects as purposeful and potentially impactful, their engagement intensifies, and their inventive potential becomes more pronounced.

Collaborative learning also plays a significant role in STEAM-oriented inventive activity. Team-based work structures enable students to share ideas, negotiate decisions, and integrate diverse cognitive strengths. This environment teaches learners how to participate in collective problem-solving and exposes them to a broader range of creative insights. Such collaboration mirrors professional engineering and innovation processes, thereby preparing students for future scientific and technological careers.

Technological tools significantly enhance the methodology of STEAM-based invention development. Digital fabrication technologies, robotics platforms, simulation software, coding environments, and data analysis tools allow students to design, test, and refine innovative solutions efficiently. Interaction with these technologies strengthens learners' digital competencies and develops their confidence in working with modern scientific tools. Additionally, the incorporation of technology supports iterative design,

enabling students to refine prototypes based on systematic feedback and evaluation.

The role of the teacher in STEAM-based inventive development is also methodologically substantial. Teachers act as facilitators, guiding students through inquiry processes, posing reflective questions, providing scaffolding, and supporting problem analysis. Instead of delivering information, they create an environment that encourages exploration and experimentation. A key component of this methodological approach is ensuring that students experience productive struggle—an educational condition in which challenges stimulate deeper cognitive processing and creative ideation.

Assessment strategies within STEAM-based inventive activity also require methodological consideration. Traditional assessments that emphasize factual recall are insufficient for evaluating invention-oriented learning. Instead, performance-based assessments, project portfolios, design journals, prototype evaluations, and peer assessments offer more comprehensive insights into students' inventive competencies. These assessment tools capture the processes of creativity, problem-solving, experimentation, and iteration, rather than focusing solely on final outcomes.

From a broader perspective, the methodological significance of developing inventive activity through STEAM projects extends beyond individual student skills. It contributes to the formation of an innovation-oriented school culture, in which curiosity, experimentation, and creativity are normalized. Such a culture fosters long-term intellectual growth and strengthens the alignment between school education and societal technological progress. As global economies increasingly rely on innovation ecosystems, the systematic cultivation of inventive thinking in schools becomes a crucial component of national development strategies.

Moreover, STEAM-based inventive education strengthens students' self-efficacy and resilience. Invention processes often involve failures, redesigns, and repeated experimentation. When students navigate these challenges, they develop perseverance and confidence in their ability to overcome obstacles. These psychological competencies are essential for innovation-driven fields, where uncertainty and complexity are inherent.

In conclusion, the methodological significance of fostering students' inventive activity through STEAM-based school projects is multifaceted. It integrates interdisciplinary knowledge, promotes inquiry-driven learning, supports project-based and collaborative methodologies, and utilizes modern technological tools. STEAM pedagogy not only enhances students' creativity and innovation potential but also equips them with the cognitive, technological, and socio-emotional competencies required for participation in future technological and scientific domains. Therefore, implementing STEAM-based invention development in school education is an essential step toward

cultivating a generation capable of contributing to national and global innovation landscapes.

REFERENCES

1. G'aniyeva G.I. Ijtimoiy fikrlash uning tarkibiy tuzilmasi va uni rivojlantirish imkoniyatlari // Til va adabiyot.uz ilmiy-metodik elektron jurnal. – Toshkent, 2024. - №21. – B.196-198. (13.00.00 OAK Rayosatining 2023-yil 3-iyundagi 338/5-son qarori).
2. G'aniyeva G.I. Boshlang'ich sinflarda tabiiy fanlarni mediata'lim vositalari asosida o'qitish metodikasini takomillashtirish (III-sinflar misolida) // O'zMU Xabarlari. – Toshkent, 2023. - №1.8.1. – B.90-92. (13.00.00. №15).
3. G'aniyeva G.I. III-sinf o'quvchilarida kreativ faoliyatni rivojlantirishda fanlararo aloqadorlik // Ta'lim, fan va innovatsiya. Ma'naviy-ma'rifiy, ilmiy-uslubiy jurnal. – Toshkent, 2023. - №5. – B.75-78. (13.00.00. №18).
4. G'aniyeva G.I. III-sinf o'quvchilarida ijtimoiy fikrlashni fanlararo mediata'lim vositalari asosida shakllantirishning holati // Ta'lim, fan va innovatsiya. Ma'naviy-ma'rifiy, ilmiy-uslubiy jurnal. – Toshkent, 2023. - №5. – B.214-217 (13.00.00. №18).
5. G'aniyeva G.I. III-sinf o'quvchilarida "Tabiiy fanlarga" oid tushunchalarni mediata'lim vositalari asosida shakllantirish // Tafakkur ziyosi. Ilmiy uslubiy jurnal. – Toshkent, 2023. - №3. – B.164-167. (13.00.00. №29).
6. G'aniyeva G.I. Boshlang'ich sinflarda tabiiy fanlarni o'qitishda integratsiyalashgan mediata'limning maqsad va vazifalari // ILM sarchashmalari. Urganch davlat universitetining ilmiy-nazariy, metodik jurnal. – Urganch, 2023. - №9. – B.119-121. (13.00.00. №31).
7. G'aniyeva G.I. III-sinf o'quvchilarida ijtimoiy fikrlashni fanlararo mediata'lim vositalari asosida shakllantirish metodikasi // Intereduglobalstudy. com Ilmiy-nazariy va metodik jurnal. – Buxoro, 2024. - №8. – B.325-332. (13.00.00 OAK Rayosatining 2024-yil 31-yanvardagi 350-son qarori).
8. G'aniyeva G.I. Formation of 3rd class student's imagination and concepts about nature // Miasto Przyszlosci (SJIF:6.567; Impact Factor: 9.2.). - Vol.39 09(2023). -P. 27-29.